Your Cart is currently empty.

Fill Cart with Goods



Decentralized Access Controls for IoT Device Networks

As the Internet of Things (IoT) steps out of its infancy into full maturity, the question of how to manage billions of devices worldwide–from fitness trackers and home energy systems to autonomous vehicles and medical devices–is becoming critically important. According to Gartner, over 20 billion IoT devices will be installed for consumer and commercial applications by 2020. In both cases, these devices will have their own digital identity and manage user data, all while maintaining security and privacy. Tampering with these devices is not just a nuisance–it could be life threatening in some cases.

While access management technologies do exist in the IoT, they are based on centralized models that bring technical limitations on the global scale. To address this issue, a team at Ericsson Research proposed a new architecture for arbitrating roles and permissions in the IoT.

“Our architecture provides a decentralized management system connected to a geographically distributed sensor network,” explained Oscar Novo. “The solution is based on blockchain technology, which eliminates the bottleneck effect caused by a centralized system, and allows new IoT devices to join easily.”

As IoT devices are unable to store blockchain information, the architecture employs management hub nodes, which request information from the blockchain on behalf of the IoT devices. Entities called “managers” are responsible for implementing permissions for a set of IoT devices and interact with a smart contract to determine this access control policy without the need for human interaction.

The goal of Novo and his team was to provide a generic, scalable, and easy-to-manage access control system for the IoT. Their study showed their architecture is able to adapt to various IoT scenarios, confirming that blockchain technology can embrace the IoT at its fullest. As IoT devices become more prevalent, this network management solution may prove valuable in keeping IoT data secure and allowing users to quickly access a geographically dispersed IoT network.